|
Nanoparticle tracking analysis (NTA) is a method for visualizing and analyzing particles in liquids that relates the rate of Brownian motion to particle size. The rate of movement is related only to the viscosity and temperature of the liquid; it is not influenced by particle density or refractive index. NTA allows the determination of a size distribution profile of small particles with a diameter of approximately 10-1000 nanometers (nm) in liquid suspension. The technique is used in conjunction with an ultramicroscope and a laser illumination unit that together allow small particles in liquid suspension to be visualized moving under Brownian motion. The light scattered by the particles is captured using a CCD or EMCCD camera over multiple frames. Computer software is then used to track the motion of each particle from frame to frame. The rate of particle movement is related to a sphere equivalent hydrodynamic radius as calculated through the Stokes–Einstein equation. The technique calculates particle size on a particle-by particle basis, overcoming inherent weaknesses in ensemble techniques such as dynamic light scattering. Since video clips form the basis of the analysis, accurate characterization of real time events such as aggregation and dissolution is possible. Samples require minimal preparation, minimizing the time required to process each sample. Speculators suggest that eventually the analysis may be done in real-time with no preparation, e.g. when detecting the presence of airborne viruses or biological weapons. NTA currently operates for particles from about 10 to 1000 nm in diameter, depending on particle type. Analysis of particles at the lowest end of this range is possible only for particles composed of materials with a high refractive index, such gold and silver. The upper size limit is restricted by the limited Brownian motion of large particles; because a large particle moves very slowly, accuracy is diminished. The viscosity of the solvent also influences the movement of particles, and it, too, plays a part in determining the upper size limit for a specific system. NTA was invented by Bob Carr, the founder and chief technology officer of NanoSight Ltd. ==Applications== NTA has been used by commercial, academic, and government laboratories working with: *Nanoparticle toxicology *Drug delivery *Exosomes, microvesicles, and other small biological particles *Virology and vaccine production *Ecotoxicology *Protein aggregation *Orthopedic implants *Inks and pigments *Nanobubbles 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Nanoparticle tracking analysis」の詳細全文を読む スポンサード リンク
|